Figure S4B

Code
# Enrique Blanco Carmona
# e.blancocarmona@kitz-heidelberg.de
# PhD Student – Clinical Bioinformatics
# Division of Pediatric Neurooncology (B062)
# DKFZ-KiTZ | Germany

sample <- readRDS("/omics/odcf/analysis/OE0145_projects/idh_gliomas/Figures_Science/revision/IDH_gliomas_book/datasets/suva_AS_TB_integrated.rds")

markers <- readRDS("/omics/odcf/analysis/OE0145_projects/idh_gliomas/Figures_Science/revision/IDH_gliomas_book/datasets/IDH_gliomas_TB_annotation_kit_with_Suva_programs_and_metaprogram_iterations.rds")
markers.use <- markers[c("OD_RA", "OD_OPC_like", "OD_Astro_like", "OD_Cycling", "Suva_Astro_Program", "Suva_Oligo_Program", "Suva_Stemness_Program")]

annotation_cols <- SCpubr:::generate_color_scale(names_use = c("RA", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10"))
annotation_cols["RA"] <-"#ECA809"

sample <- SCpubr:::compute_enrichment_scores(sample, input_gene_list = list("OD_RA" = markers$OD_RA))

# Get the value for which the probabilty to find a more extreme value is 5%.
dist.test <- sample@meta.data[, "OD_RA", drop = FALSE]
range.use <- c(min(dist.test$OD_RA, na.rm = TRUE),
               max(dist.test$OD_RA, na.rm  = TRUE))

df.probs <- data.frame(row.names = seq(range.use[1], range.use[2], by = 0.0001))
vector.probs <- c()
for (i in rownames(df.probs)){
  prob <- pnorm(as.numeric(i),
                mean = mean(dist.test$OD_RA),
                sd = stats::sd(dist.test$OD_RA),
                lower.tail = FALSE)
  vector.probs <- c(vector.probs, prob)
}
df.probs$Prob <- vector.probs
value.use <- df.probs %>% dplyr::filter(.data$Prob <= 0.05) %>% head(1) %>% rownames() %>% as.numeric()

# Define RA population based on this value.
sample$Annotation <- as.character(sample$seurat_clusters)
sample$Annotation[names(sample$Annotation) %in% names(sample$OD_RA[sample$OD_RA >= value.use])] <- "RA"
Code
p1 <- SCpubr::do_DimPlot(sample, 
                         group.by = "Annotation", 
                         font.size = 20,
                         label = TRUE,
                         repel = TRUE,
                         legend.position = "none",
                         raster = TRUE,
                         raster.dpi = 2048,
                         pt.size = 4,
                         colors.use = annotation_cols,
                         legend.icon.size = 8,
                         legend.ncol = 3)

p2 <- ggplot2::ggplot(dist.test, mapping = ggplot2::aes(x = .data$OD_RA)) +
      ggplot2::geom_histogram(bins = 100, color = "black", fill = "steelblue") +
      ggplot2::geom_vline(xintercept = value.use, color = "black") +
      ggpubr::theme_pubr(base_size = 20) +
      ggplot2::xlab("Enrichment scores for RE metaprogram") +
      ggplot2::ylab("Number of cells") + 
      ggplot2::labs(title = "Suva AS | Shapiro test | OD_RE ",
                    subtitle = paste0("p value = ",  
                                      format(stats::shapiro.test(dist.test$OD_RA)$p.value, scientific = FALSE),
                                      " | Value so that P(X > Value) = 0.05: ",
                                      round(value.use, 4)))

out <- SCpubr::do_AffinityAnalysisPlot(sample = sample,
                                       input_gene_list = markers.use,
                                       assay = "SCT",
                                       slot = "data",
                                       min.cutoff = NA,
                                       max.cutoff = 2,
                                       subsample = NA,
                                       group.by = "Annotation",
                                       return_object = TRUE, 
                                       font.size = 20,
                                       axis.text.face = "plain",
                                       legend.length = 8,
                                       legend.width = 0.5,
                                       legend.framecolor = "grey50",
                                       legend.tickcolor = "white",
                                       legend.framewidth = 0.2,
                                       legend.tickwidth = 0.2,)

p3 <- out$Heatmap

p4 <- SCpubr::do_FeaturePlot(sample = sample, 
                             features = "OD_RA",
                             font.size = 20,
                             raster = TRUE,
                             raster.dpi = 2048,
                             pt.size = 4,
                             legend.length = 8,
                             legend.width = 0.5,
                             legend.framecolor = "grey50",
                             legend.tickcolor = "white",
                             legend.framewidth = 0.2,
                             legend.tickwidth = 0.2,
                             order = TRUE)

# Compute dataframe of averaged expression of the genes and bin it.
data.avg <- SCpubr:::.GetAssayData(sample = sample,
                                   assay = "SCT",
                                   slot = "data") %>% 
            Matrix::rowMeans() %>%
            as.data.frame() %>% 
            dplyr::arrange(.data$.)

data.avg <- data.avg %>% 
            dplyr::mutate("rnorm" = stats::rnorm(n = nrow(data.avg))/1e30) %>% 
            dplyr::mutate("values.use" = .data$. + .data$rnorm)
# Produce the expression bins.
bins <- ggplot2::cut_number(x = data.avg %>% dplyr::pull(.data$values.use) %>% as.numeric(), 
                            n = 24, 
                            labels = FALSE, 
                            right = FALSE)
data.avg$bin <- bins

geneset_list <- list()
geneset_list[["OD_RA"]] <- markers.use[["OD_RA"]]

# Method extracted and adapted from Seurat::AddModuleScore: https://github.com/satijalab/seurat/blob/master/R/utilities.R#L272
# Get the bin in which the list of genes is averagely placed.
empiric_bin <- data.avg %>% 
               tibble::rownames_to_column(var = "gene") %>% 
               dplyr::filter(.data$gene %in% geneset_list[["OD_RA"]]) %>% 
               dplyr::pull(.data$bin)


# Generate 50 randomized control gene sets.
for (i in seq_len(length(geneset_list[["OD_RA"]]))){
  control_genes <- NULL
  for (bin in unique(empiric_bin)){
    control.use <- data.avg %>% 
                   tibble::rownames_to_column(var = "gene") %>% 
                   dplyr::filter(!(.data$gene %in% geneset_list[["OD_RA"]])) %>%
                   dplyr::filter(.data$bin == .env$bin) %>%  
                   dplyr::pull(.data$gene) %>% 
                   sample(size = sum(empiric_bin == bin), replace = FALSE)
    control_genes <- append(control_genes, control.use)
  }
  geneset_list[[paste0("Control.", i)]] <- control_genes
}


out <- SCpubr::do_AffinityAnalysisPlot(sample = sample,
                                       input_gene_list = geneset_list,
                                       assay = "SCT",
                                       slot = "data",
                                       min.cutoff = NA,
                                       subsample = NA,
                                       group.by = "Annotation",
                                       return_object = TRUE, 
                                       font.size = 16,
                                       verbose = TRUE,
                                       axis.text.face = "plain",
                                       legend.length = 8,
                                       legend.width = 0.5,
                                       legend.framecolor = "grey50",
                                       legend.tickcolor = "white",
                                       legend.framewidth = 0.2,
                                       legend.tickwidth = 0.2,
                                       flip = TRUE)

p5 <- out$Heatmap + ggplot2::labs(x = "Gene set") + ggplot2::theme(axis.title.y.left = ggplot2::element_text(hjust = 0.5))